Correlating lipid bilayer fluidity with sensitivity and resolution of polytopic membrane protein spectra by solid-state NMR spectroscopy.
نویسندگان
چکیده
Solid-state NMR spectroscopy has emerged as an excellent tool to study the structure and dynamics of membrane proteins under native-like conditions in lipid bilayers. One of the key considerations in experimental design is the uniaxial rotational diffusion of the protein that can affect the NMR spectral observables. In this regard, temperature plays a fundamental role in modulating the phase properties of the lipids, which directly influences the rotational diffusion rate of the protein in the bilayer. In fact, it is well established that below the main phase transition temperature of the lipid bilayer the protein's motion is significantly slowed while above this critical temperature the rate is increased. In this article, we carried out a systematic comparison of the signal intensity and spectral resolution as a function of temperature using magic-angle-spinning (MAS) solid-state NMR spectroscopy. These observables were directly correlated with the relative fluidity of the lipid bilayer as inferred from differential scanning calorimetry (DSC). We applied our hybrid biophysical approach to two polytopic membrane proteins from the small multidrug resistance family (EmrE and SugE) reconstituted into model membrane lipid bilayers (DMPC-14:0 and DPPC-16:0). From these experiments, we conclude that the rotational diffusion giving optimal spectral resolution occurs at a bilayer fluidity of ~5%, which corresponds to the percentage of lipids in the fluid or liquid-crystalline fraction. At the temperature corresponding to this critical value of fluidity, there is sufficient mobility to reduce inhomogeneous line broadening that occurs at lower temperatures. A greater extent of fluidity leads to faster uniaxial rotational diffusion and a sigmoidal-type reduction in the NMR signal intensity, which stems from intermediate-exchange dynamics where the motion has a similar frequency as the NMR observables (i.e., dipolar couplings and chemical shift anisotropy). These experiments provide insight into the optimal temperature range and corresponding bilayer fluidity to study membrane proteins by solid-state NMR spectroscopy.
منابع مشابه
Combination of ¹⁵N reverse labeling and afterglow spectroscopy for assigning membrane protein spectra by magic-angle-spinning solid-state NMR: application to the multidrug resistance protein EmrE.
Magic-angle-spinning (MAS) solid-state NMR spectroscopy has emerged as a viable method to characterize membrane protein structure and dynamics. Nevertheless, the spectral resolution for uniformly labeled samples is often compromised by redundancy of the primary sequence and the presence of helical secondary structure that results in substantial resonance overlap. The ability to simplify the spe...
متن کاملLipid bilayer dynamics and rhodopsin-lipid interactions: new approach using high-resolution solid-state 13C NMR.
High-resolution, solid-state 13C NMR spectra have been obtained for unsonicated multilamellar dispersions of 1,2-dilauryl-sn-glycero-3-phosphocholine (DLPC), recombinant membranes containing DLPC and rhodopsin, and native retinal rod disk membranes. The roles of 1H dipolar decoupling, 1H-13C cross-polarization, and magic-angle sample spinning have been investigated. Rotating-frame 13C relaxatio...
متن کاملHigh-resolution NMR spectroscopy of membrane proteins in aligned bicelles.
High-resolution solid-state NMR spectra can be obtained from uniformly (15)N-labeled membrane proteins in magnetically aligned bicelles. Fast uniaxial diffusion about the axis of the bilayer normal results in single-line spectra that contain the orientational information necessary for protein structure determination.
متن کاملEffects of Membrane Peptide Dynamics on High-Resolution Magic-Angle Spinning NMR Effets de la dynamique d’un peptide membranaire sur un spectre RMN haute résolution en rotation a l’angle magique
In the past fifteen years, interference between molecular dynamics and coherent manipulation of nuclear magnetization in nuclear magnetic resonance (NMR) experiments such as spin decoupling, cross-polarization or magic-angle spinning (MAS) have been identified and studied carefully. Recent experiments performed in our laboratory on model compounds have provided insight into the nature of a pert...
متن کاملStructure determination of membrane proteins by NMR spectroscopy.
Current strategies for determining the structures of membrane proteins in lipid environments by NMR spectroscopy rely on the anisotropy of nuclear spin interactions, which are experimentally accessible through experiments performed on weakly and completely aligned samples. Importantly, the anisotropy of nuclear spin interactions results in a mapping of structure to the resonance frequencies and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochimica et biophysica acta
دوره 1848 1 Pt B شماره
صفحات -
تاریخ انتشار 2015